Laplacian affine sparse coding with tilt and orientation consistency for image classification

نویسندگان

  • Chunjie Zhang
  • Shuhui Wang
  • Qingming Huang
  • Chao Liang
  • Jing Liu
  • Qi Tian
چکیده

Recently, sparse coding has become popular for image classification. However, images are often captured under different conditions such as varied poses, scales and different camera parameters. This means local features may not be discriminative enough to cope with these variations. To solve this problem, affine transformation along with sparse coding is proposed. Although proven effective, the affine sparse coding has no constraints on the tilt and orientations as well as the encoding parameter consistency of the transformed local features. To solve these problems, we propose a Laplacian affine sparse coding algorithm which combines the tilt and orientations of affine local features as well as the dependency among local features. We add tilt and orientation smooth constraints into the objective function of sparse coding. Besides, a Laplacian regularization term is also used to characterize the encoding parameter similarity. Experimental results on several public datasets demonstrate the effectiveness of the proposed method. 2013 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Multiview Hessian discriminative sparse coding for image annotation

Sparse coding represents a signal sparsely by using an overcomplete dictionary, and obtains promising performance in practical computer vision applications, especially for signal restoration tasks such as image denoising and image inpainting. In recent years, many discriminative sparse coding algorithms have been developed for classification problems, but they cannot naturally handle visual dat...

متن کامل

Robust Image Analysis by L1-Norm Semi-supervised Learning

This paper presents a novel L1-norm semisupervised learning algorithm for robust image analysis by giving new L1-norm formulation of Laplacian regularization which is the key step of graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is defined directly over the eigenvectors of the normalized Laplacian matrix, we successfully formulate semi-supervised learning as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Visual Communication and Image Representation

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013